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Abstract

We investigate the problem of linear water wave propagation under a set of elastic plates of variable properties. The

problem is two-dimensional, but we allow the waves to be incident from an angle. Since the properties of the elastic

plates can be set arbitrarily, the solution method can also be applied to model regions of open water as well as elastic

plates. We assume that the boundary conditions at the plate edges are the free boundary conditions, although the

method could be extended straightforwardly to cover other possible boundary conditions. The solution method is based

on an eigenfunction expansion under each elastic plate and on matching these expansions at each plate boundary. We

choose the number of matching conditions so that we have fewer equations than unknowns. The extra equations are

found by applying the free-edge boundary conditions. We show that our results agree with previous work and that they

satisfy the energy balance condition. We also compare our results with a series of experiments using floating elastic

plates, which were performed in a two-dimensional wave tank.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of linear wave propagation through a region of water containing floating elastic plates has been the subject

of significant research. The original motivation for this study was to understand wave propagation in ice-covered seas,

but recently the construction (or proposed construction) of very large floating structures (VLFS) has motivated much of

the research. The research motivated by ice-covered seas is described in Squire et al. (1995) and Wadhams (2000), and

the research motivated by VLFS is described in Kashiwagi (2000) and Watanabe et al. (2004).

The specific problem we are concerned with here is a two-dimensional fluid covered by a finite number of elastic

plates, of possibly different properties. Within this formulation we consider regions of open water as arising from

limiting cases of plates of vanishing thickness. These kinds of problems have generally been studied in the context of

two semi-infinite plates (or possibly a single semi-infinite plate and open water). The simplest problem to consider is one

where there are only two semi-infinite plates of identical properties separated by a crack. A simpler but related problem
e front matter r 2006 Elsevier Ltd. All rights reserved.
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in acoustics was considered by Kouzov (1963), who used an integral representation of the problem to solve it explicitly

using the Riemann–Hilbert technique. Recently the crack problem has been considered by Squire and Dixon (2000)

and by Williams and Squire (2002), using a Green function method applicable to infinitely deep water, and they

obtained simple expressions for the reflection and transmission coefficients. Squire and Dixon (2001) extended the

single crack problem to a multiple crack problem, in which the semi-infinite regions are separated by a region consisting

of a finite number of plates of finite size with all plates having identical properties. This problem is very close to the

one considered here, except that we allow the plate properties to be arbitrary. Evans and Porter (2003) considered

the multiple crack problem for finitely deep water and they derived a simple solution, again in the case where all plates

have identical properties. They simplified their method further and provided an explicit solution, in Porter and Evans

(2006).

In parallel to the crack problem, the more challenging problem of two semi-infinite plates of different properties was

considered. The first significant work on this problem was by Evans and Davies (1968), who present a solution method

for evaluating the transmission and reflection of waves, in finitely deep water, propagating from a semi-infinite region of

open water into a semi-infinite region of a floating elastic plate. The method of solution was based on the Wiener–Hopf

technique. However, Evans and Davies (1968) found explicit solutions for the case of shallow water, and they only

presented the formulation for the finite-depth water case and were not able to compute the coefficients for the reflection

and transmission. This problem was solved numerically by Fox and Squire (1994) using eigenfunction expansion.

Barrett and Squire (1996) extended the solution of Fox and Squire (1994) to two plates of arbitrary properties.

Recently, the computational difficulties associated with the Wiener–Hopf solution of Evans and Davies (1968) have

been overcome by Balmforth and Craster (1999), Chakrabarti (2000), Tkacheva (2001), and by Chung and Fox (2002).

Chung and Linton (2005) have also solved the problem of open water and a semi-infinite plate using the residue calculus

technique, a method which is closely related to the Wiener–Hopf method.

The closest solution to the one presented here was derived by Hermans (2004), based on an earlier solution for a

single plate (Hermans, 2003). This solution was for a set of finite elastic plates of arbitrary properties. That problem

differed from the one presented here, only by requiring that the semi-infinite regions are open water. The solution

method presented in Hermans (2004) was quite different from the one presented here, and it was based on using the

free-surface Green function.

We develop here a solution to the problem of wave propagation under many floating elastic plates of variable

properties. We assume that the first and last plate are semi-infinite. Our solution allows us to consider the case

of open water, by taking the limit as the plate thickness tends to zero. The solution is derived using an extended

eigenfunction matching method, in which the plate boundary conditions are satisfied as auxiliary equations. We

show that our solutions satisfy the energy balance condition, and that they agree with the results found by the

method of Porter and Evans (2006). We also compare solutions with experiments which have recently been per-

formed in a two-dimensional wave tank, using floating elastic plates of various geometries. These experiments,

which were motivated by modelling wave propagation under floating ice sheets, are described in Sakai and Hanai

(2002).

This work is the first step in a program to develop a model for wave propagation in the marginal ice zone. We require

a solution for wave scattering which, while two-dimensional, is sufficiently flexible that it can include effects such as

variable plate thickness and regions of open water. We require a high degree of confidence in the correctness of our

numerical solution if it is to be used in a marginal ice zone model, and for this reason we focus on presenting results

which establish the accuracy of the solution.
2. Formulation and preliminaries

We consider the problem of small-amplitude waves which are incident on a set of floating elastic plates occupying the

entire water surface. The submergence of the plates is considered negligible. The extension of the method to submerged

plates may be possible by modifying the present formulation but this remains a subject for future research. We assume

that the problem is invariant in the y direction, although we allow the waves to be incident from an angle. The set of

plates consists of two semi-infinite plates, separated by a region which consists of a finite number of plates with variable

properties. We note that we can simulate open water by setting the plate properties, i.e. thickness, to be small or by

introducing an additional formulation. To keep the presentation and the computer code which we have developed as

simple as possible, we will not present an additional formulation, and we simply set the plate parameters to be

sufficiently small if we require open water for any calculations. We also assume that the plate edges are free to move at

each boundary, although other boundary conditions could easily be considered using the methods of solution presented

here. A schematic diagram of the problem is shown in Fig. 1.
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Fig. 1. A schematic diagram showing the set of floating elastic plates and the coordinate systems used in the solution. The three-

dimensional region is defined by �1ox; yo1 and �hozp0. I represents the incident wave. Rm and Tm represent the reflection and

transmission coefficients of the mth plate, lm and rm represent the left and right edge of the plate m and L represents the last plate.
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2.1. Assumptions and conditions

We assume that in the fluid region �1ox; yo1 and �hozp0, the flow is irrotational and inviscid, so that the fluid

velocity can be written as the gradient of a velocity potential F which satisfies Laplace’s equation in the fluid region, i.e.

r2F ¼ 0 for � hozp0. (1)

We consider only incident waves of a single frequency o, and we assume that these waves also have a simple harmonic

variation with respect to y. The velocity potential of the wave can therefore be expressed as (Stoker, 1957; Fox and

Squire, 1994):

Fðx; y; z; tÞ ¼ Rffðx; zÞ eikyy e�iotg, (2)

where f is the complex-valued potential, ky is the wave number in the y direction and R denotes the real part.

We assume that the seabed is impermeable, and therefore the velocity component normal to the sea floor vanishes.

Hence, the velocity potential at the sea floor satisfies

qF
qz
¼ 0 at z ¼ �h. (3)

The corresponding elevation of the plates is defined by RfZðxÞ eikyy e�iotg where, using the linear kinematic condition

at the free surface

�ioZ ¼
qf
qz

at z ¼ 0 (4)

(Billingham and King, 2000). We assume the mth elastic plate has mass density rm and thickness dm. We assume that the

amplitude at the free surface is small relative to the wavelength and that the curvature is small and hence linearity can

be applied. The equation of motion for the plate is therefore given by the elastic plate equation

P ¼ Dm
q2

qx2
� k2

y

� �2

Z� o2mmZ at z ¼ 0; lmpxprm (5)

(Wang and Meylan, 2004) where P is the pressure at the surface, Dm is the rigidity constant of the mth plate and

mm ¼ rmdm. The dynamic condition given by the linearised Bernoulli equation applies

�iofþ
P

r
þ gZ ¼ 0 at z ¼ 0 (6)

(Stoker, 1957), where P is the pressure at the water surface and r is the water density. Equating Eqs. (5) and (6) gives

Dm
q2

qx2
� k2

y

� �2

Z� o2mmZ� iorfþ rgZ ¼ 0 at z ¼ 0; lmpxprm. (7)
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Additional constraints apply at the edges of the elastic plates (Fox and Squire, 1994). We assume that the plate edges

are free, which implies that the bending moment and the shearing forces at the edges are zero. Therefore, the edge

boundary conditions can be expressed as

q3

qx3
� ð2� nÞk2

y

q
qx

� �
Z ¼ 0 at z ¼ 0 for x ¼ lm; rm, (8)

q3

qx2
� nk2

y

� �
Z ¼ 0 for at z ¼ 0 for x ¼ lm; rm, (9)

where n is Poisson’s constant and lm and rm represent the left and right edge of the mth plate as shown in Fig. 1.

2.2. Nondimensionalising the variables

It is convenient to reduce the number of constants in the equations by nondimensionalising. We nondimensionalise

by scaling the spatial variables by a length parameter L, and the time variables by a time parameter
ffiffiffiffiffiffiffiffi
L=g

p
. We leave

open the choice of length parameter L. The nondimensional variables, (denoted by an overbar) are

x̄ ¼
x

L
; ȳ ¼

y

L
; z̄ ¼

z

L
; Z̄ ¼

Z
L
; t̄ ¼

tffiffiffiffiffiffiffiffi
g=L

p and f̄ ¼
f

L
ffiffiffiffiffiffi
Lg
p .

The boundary condition given by Eq. (7) can now be nondimensionally expressed as

bm
q2

qx̄2
� k̄

2

y

� �2

Z̄� ō2gmZ̄� iōf̄þ Z̄ ¼ 0 at z ¼ 0; l̄mpx̄pr̄m, (10)

where bm ¼ Dm=rmgL4 is referred to as the stiffness constant and gm ¼ mm=rL is referred to as the mass constant. From

here on in, all equations are expressed nondimensionally, and for simplicity the overbar will be omitted from the

dimensionless variables in what follows.

2.3. Final equations

Eliminating Z using Eq. (4), Eqs. (1), (3), (8), (9), and (10) become

q2

qx2
þ

q2

qz2
� k2

y

� �
f ¼ 0 for � hozp0, (11)

qf
qz
¼ 0 at z ¼ �h, (12)

bm
q2

qx2
� k2

y

� �2

� gmaþ 1

 !
qf
qz
� af ¼ 0 at z ¼ 0; lmpxprm, (13)

where a ¼ o2 and

q3

qx3
� ð2� nÞk2

y

q
qx

� �
qf
qz
¼ 0 at z ¼ 0 for x ¼ lm; rm, (14)

q2

qx2
� nk2

y

� �
qf
qz
¼ 0 for at z ¼ 0 for x ¼ lm; rm. (15)

3. Method of solution

3.1. Eigenfunction expansion

We shall solve Eqs. (11)–(15) using an eigenfunction expansion. This method has been applied in many situations for

linear water wave problems, and the technique is described in Linton and Mclver (2001). The method was developed by

Fox and Squire (1994) for the case of the elastic plate boundary condition, and subsequently it has been used by Barrett
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and Squire (1996), Sahoo et al. (2001) and Teng et al. (2001). We show here how this method can be extended to the case

of an arbitrary number of plates. One of the key features in the eigenfunction expansion method for elastic plates is that

extra modes are required in order to solve the higher order boundary conditions at the plate edges. The first and last

plates are semi-infinite and the middle plates are finite. The potential velocity of the first plate can be expressed as the

summation of an incident wave and of reflected waves, one of which is propagating but the rest are evanescent and they

decay as x tends to �1. Similarly the potential under the final plate can be expressed as a sum of transmitting waves,

one of which is propagating and the rest are evanescent and decay towards þ1. The potential under the middle plates

can be expressed as the sum of transmitting waves and reflected waves, each of which consists of a propagating wave

plus evanescent waves which decay as x decreases or increases, respectively. We could combine these waves in the

formulation, but because of the exponential growth (or decay) in the x direction the solution becomes numerically

unstable in some cases if the transmission and reflection are not expanded at opposite ends of the plate.

3.2. Separation of variables

The potential velocity can be written in terms of an infinite series of separated eigenfunctions under each elastic plate,

of the form

f ¼ ekmx cosðkmðzþ hÞÞ.

If we apply the boundary conditions given by Eqs. (12) and (13) we obtain

km tanðkmhÞ ¼ �
a

bmk4
m þ 1� agm

(16)

(Fox and Squire, 1994). Solving for km, this dispersion Eq. (16) gives a pure imaginary root with positive imaginary part,

two complex roots (two complex conjugate paired roots with positive imaginary part in all physical situations), an

infinite number of positive real roots which approach np=h as n approaches infinity, and also the negative of all these

roots (Fox and Squire, 1994). We denote the two complex roots with positive imaginary part by kmð�2Þ and kmð�1Þ, the

purely imaginary root with positive imaginary part by kmð0Þ and the real roots with positive imaginary part by kmðnÞ for

n a positive integer. The imaginary root with positive imaginary part corresponds to a reflected travelling mode

propagating along the x axis. The complex roots with positive imaginary parts correspond to damped reflected

travelling modes and the real roots correspond to reflected evanescent modes. In a similar manner, the negative of these

correspond to the transmitted travelling, damped and evanescent modes, respectively. The coefficient km is

kmðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmðnÞ

2
þ k2

y

q
,

where the root with positive real part is chosen or if the real part is negative with negative imaginary part. Note that the

solutions of the dispersion equation will be different under plates of different properties, and that the expansion is only

valid under a single plate. We will solve for the coefficients in the expansion by matching the potential and its x

derivative at each boundary and by applying the boundary conditions at the edge of each plate.

3.3. Expressions for the potential velocity

We now expand the potential under each plate using the separation of variables solution. We always include the two

complex and one imaginary root, and truncate the expansion at M real roots of the dispersion equation. The potential

f can now be expressed as the following sum of eigenfunctions:

f �

Iek1ð0Þðx�r1Þ
cosðk1ð0Þðzþ hÞÞ

cosðk1ð0ÞhÞ
þ
PM

n¼�2

R1ðnÞ e
k1ðnÞðx�r1Þ

cosðk1ðnÞðzþ hÞÞ

cosðk1ðnÞhÞ
for xor1;

PM
n¼�2

TmðnÞe
�kmðnÞðx�lmÞ

cosðkmðnÞðzþ hÞÞ

cosðkmðnÞhÞ
þ
PM

n¼�2

RmðnÞ e
kmðnÞðx�rmÞ

cosðkmðnÞðzþ hÞÞ

cosðkmðnÞhÞ
for lmoxorm;

PM
n¼�2

TLðnÞe
�kLðnÞðx�lLÞ

cosðkLðnÞðzþ hÞÞ

cosðkLðnÞhÞ
for lLox;

8>>>>>>>>><
>>>>>>>>>:

(17)

where I is the nondimensional incident wave amplitude in potential, m is the mth plate, L is the last plate, rm represents

the x-coordinate of the right edge of the mth plate, lmð¼ rm�1Þ represents the x-coordinate of the left edge of the mth
plate, RmðnÞ represents the reflected potential coefficient of the nth mode under the mth plate, and TmðnÞ represents the
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transmitted potential coefficient of the nth mode under the mth plate. Note that we have divided by cosðkhÞ, so that the

coefficients are normalised by the potential at the free surface rather than at the bottom surface.

3.4. Expressions for displacement

The displacement is given by

Z �
i

o

Ik1ð0Þe
k1ð0Þðx�r1Þ tanðk1ð0ÞhÞ �

PM
n¼�2

R1ðnÞk1ðnÞ e
k1ðnÞðx�r1Þ tanðk1ðnÞhÞ for xor1;

�
PM

n¼�2

TmðnÞkmðnÞe
�kmðnÞðx�lmÞ tanðkmðnÞhÞ

�
PM

n¼�2

RmðnÞkmðnÞ e
kmðnÞðx�rmÞ tanðkmðnÞhÞ for lmoxorm;

�
PM

n¼�2

TLðnÞkmðnÞe
�kmðnÞðx�lLÞ tanðkmðnÞhÞ for lLox:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(18)

3.5. Solving via eigenfunction matching

To solve for the coefficients, we require as many equations as we have unknowns. We derive the equations from the

free edge conditions and from imposing conditions of continuity of the potential and its derivative in the x-direction at

each plate boundary. We impose the latter condition by taking inner products with respect to the orthogonal functions

cosððmp=hÞðzþ hÞÞ, where m is a natural number. These functions are chosen for the following reasons. The vertical

eigenfunctions cos ðkmðnÞðzþ hÞÞ are not orthogonal (they are not even a basis) and could therefore lead to an ill-

conditioned system of equations. Furthermore, by choosing cos ððmp=hÞðzþ hÞÞ we can use the same functions to take

the inner products under every plate. Finally, and most importantly, the plate eigenfunctions approach cos ððmp=hÞ

ðzþ hÞÞ for large m, so that as we increase the number of modes the matrices become almost diagonal, leading to a very

well-conditioned system of equations.

Taking inner products leads to the following equationsZ 0

�h

fmðrm; zÞ cos
mp
h
ðzþ hÞ

� �
dz ¼

Z 0

�h

fmþ1ðlmþ1; zÞ cos
mp
h
ðzþ hÞ

� �
dz,

Z 0

�h

qfm

qx
ðrm; zÞ cos

mp
h
ðzþ hÞ

� �
dz ¼

Z 0

�h

qfmþ1

qx
ðlmþ1; zÞ cos

mp
h
ðzþ hÞ

� �
dz, (19)

where m 2 ½0;M� and fm denotes the potential under the mth plate, i.e. the expression for f given by Eq. (17) valid for

lmoxorm. The remaining equations to be solved are given by the two edge conditions satisfied at both edges of each

plate

q3

qx3
� ð2� nÞk2

y

q
qx

� �
qfm

qz
¼ 0 for z ¼ 0 and x ¼ lm; rm,

q2

qx2
� nk2

y

� �
qfm

qz
¼ 0 for z ¼ 0 and x ¼ lm; rm. ð20Þ

We shall show the explicit form of the linear system of equations which arise when we solve Eqs. (19) and (20). Let Tm be

a column vector given by ½Tmð�2Þ; . . . ;TmðMÞ�
T and Rm be a column vector given by ½Rmð�2Þ . . .RmðMÞ�

T.

The equations which arise from matching at the boundary between the first and second plate are

ICþMþR1
R1 ¼M�T2

T2 þM�R2
R2; �k1ð0ÞICþNþR1

R1 ¼ N�T2
T2 þN�R2

R2. ð21Þ

The equations which arise from matching at the boundary of the mth and ðmþ 1Þth plate boundary ðm41Þ are

MþTm
Tm þMþRm

Rm ¼M�Tmþ1
Tmþ1 þM�Rmþ1

Rmþ1; NþTm
Tm þNþRm

Rm ¼ N�Tmþ1
Tmþ1 þN�Rmþ1

Rmþ1. ð22Þ

The equations which arise from matching at the ðL� 1Þth and Lth boundary are

MþTL�1
TL�1 þMþRL�1

RL�1 ¼M�TL
TL; NþTL�1

TL�1 þNþRL�1
RL�1 ¼ N�TL

TL, ð23Þ
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where MþTm
;MþRm

;M�Tm
, and M�Rm

are ðM þ 1Þ by ðM þ 3Þ matrices given by

MþTm
ðm; nÞ ¼

Z 0

�h

e�kmðnÞðrm�lmÞ
cosðkmðnÞðzþ hÞÞ

cosðkmðnÞhÞ
cos

mp
h
ðzþ hÞ

� �
dz,

MþRm
ðm; nÞ ¼

Z 0

�h

cosðkmðnÞðzþ hÞÞ

cosðkmðnÞhÞ
cos

mp
h
ðzþ hÞ

� �
dz, ð24Þ

M�Tm
ðm; nÞ ¼MþRm

ðm; nÞ; M�Rm
ðm; nÞ ¼MþTm

ðm; nÞ.

NþTm
;NþRm

;N�Tm
, and N�Rm

are given by

N�Tm
ðm; nÞ ¼ �kmðnÞM�Tm

ðm; nÞ; N�Rm
ðm; nÞ ¼ kmðnÞM�Rm

ðm; nÞ. ð25Þ

C is a ðM þ 1Þ vector which is given by

CðmÞ ¼

Z 0

�h

cosðk1ð0Þðzþ hÞÞ

cosðk1ð0ÞhÞ
cos

mp
h
ðzþ hÞ

� �
dz. (26)

The integrals in Eqs. (24) and (26) are each solved analytically. Now, for all but the first and Lth plate, Eq. (20)

becomes

EþTm
Tm þ EþRm

Rm ¼ 0; E�Tm
Tm þ E�Rm

Rm ¼ 0. ð27Þ

The first and last plates only require two equations, because each has only one plate edge. The equation for the first

plate must be modified to include the effect of the incident wave. This gives us

I
EþT1
ð1; 0Þ

EþT1
ð2; 0Þ

 !
þ EþR1

R1 ¼ 0, (28)

and for the Lth plate we have no reflection so

E�Tm
Tm ¼ 0. (29)

EþTm
;EþRm

;E�Tm
and E�Rm

are 2� ðM þ 1Þ matrices given by

E�Tm
ð1; nÞ ¼ ðkmðnÞ

2
� ð2� nÞk2

yÞðkmðnÞkmðnÞ tanðkmðnÞhÞÞ,

EþTm
ð1; nÞ ¼ ðkmðnÞ

2
� ð2� nÞk2

yÞðkmðnÞkmðnÞ e�kmðnÞðrm�lmÞ tanðkmðnÞhÞÞ,

E�Rm
ð1; nÞ ¼ ðkmðnÞ

2
� ð2� nÞk2

yÞð�kmðnÞkmðnÞ ekmðnÞðlm�rmÞ tanðkmðnÞhÞÞ,

EþRm
ð1; nÞ ¼ ðkmðnÞ

2
� ð2� nÞk2

yÞð�kmðnÞkmðnÞ tanðkmðnÞhÞÞ,

E�Tm
ð2; nÞ ¼ ðkmðnÞ

2
� nk2

yÞð�kmðnÞ tanðkmðnÞhÞÞ,

EþTm
ð2; nÞ ¼ ðkmðnÞ

2
� nk2

yÞð�kmðnÞ e
�kmðnÞðrm�lmÞ tanðkmðnÞhÞÞ,

E�Rm
ð2; nÞ ¼ ðkmðnÞ2 � nk2

yÞð�kmðnÞ e
kmðnÞðlm�rmÞ tanðkmðnÞhÞÞ,

EþRm
ð2; nÞ ¼ ðkmðnÞ

2
� nk2

yÞð�kmðnÞ tanðkmðnÞhÞÞ. ð30Þ

Now, the matching matrix is a ð2M þ 6Þ � ðL� 1Þ by ð2M þ 1Þ � ðL� 1Þ matrix given by

M ¼

MþR1
�M�T2

�M�R2
0 0 0 0 0

NþR1
�N�T2

�N�R2
0 0 0 0 0

0 MþT2
MþR2

�M�T3
�M�R3

. . . 0 0 0

0 NþT2
NþR2

�N�T3
�N�R3

0 0 0

..

. . .
.

0 0 0 0 0 MþTL�1
MþRL�1

�M�TL

0 0 0 0 0 NþTL�1
NþRL�1

�N�TL

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
; (31)
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the edge matrix is a ð2M þ 6Þ � ðL� 1Þ by 4ðL� 1Þ matrix given by

E ¼

EþR1
0 0 0 0 0 0 0

0 EþT2
EþR2

0 0 0 0 0

0 E�T2
E�R2

0 0 0 0 0

0 0 0 EþT3
EþR3

. . . 0 0 0

0 0 0 E�T3
E�R3

0 0 0

..

. . .
.

0 0 0 0 0 EþTL�1
EþRL�1

0

0 0 0 0 0 E�TL�1
E�RL�1

0

0 0 0 0 0 0 0 E�TL

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

; (32)

and finally the complete system to be solved is given by

M

E

� �
�

R1

T2

R2

T3

R3

..

.

TL�1

RL�1

TL

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

¼

�IC

k1ð0ÞIC

0

..

.

�IEþT1
ð1; 0Þ

�IEþT1
ð2; 0Þ

0

..

.

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

. (33)

The final system of equations has size ð2M þ 6Þ � ðL� 1Þ by ð2M þ 6Þ � ðL� 1Þ. The method of solution we have

derived is relatively simple and leads to large systems of equations when we simulate multiple plates. Our aim is to

produce code which is simple to develop and in which we have a strong degree of confidence, and one that is

numerically accurate and error free. We do not want to make any kind of wide-spacing approximations since real ice

fields always have some small floes which we want to be able to simulate. We have used our method to solve for up to a

100 plates in simulations of wave propagation in the marginal ice zone.

The system of equations has a large number of zero entries, due to the fact that each plate couples only with

its nearest neighbour. It seems likely that a more sophisticated method of solution could be developed, which

exploits this structure. We have been unable to find such a method due to the difficulty of including the free edge

conditions.

4. Validation of the solutions

4.1. Energy balance

An energy balance relation is derived in Evans and Davies (1968) which is simply a condition that the incident

energy is equal to the sum of the radiated energy including both the energy in the water and the energy in the plate.

If the properties of the first and last semi-infinite plates were identical, then this would be the familiar require-

ment that

jTLð0Þj
2 þ jR1ð0Þj

2 ¼ jI j2.

However, when the first and last plates have different properties, then the energy balance condition becomes the

following:

DjTLð0Þj
2 þ jR1ð0Þj

2 ¼ jI j2, (34)
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where D is found by applying Green’s theorem to f and its conjugate (Evans and Davies, 1968) and is given by

D ¼
kLð0Þk1ð0Þ cosh

2
ðk1ð0ÞhÞ

k1ð0ÞkLð0Þ cosh
2
ðkLð0ÞhÞ

�

bL
a
4kLð0Þ

3
ðkLð0Þ

2
þ k2

yÞ sinh
2
ðkLð0ÞhÞ þ

1

2
sinh ð2kLð0ÞhÞ þ kLð0Þh

� �
b1
a
4k1ð0Þ

3
ðk1ð0Þ

2
þ k2

yÞ sinh
2
ðk1ð0ÞhÞ þ

1

2
sinh ð2k1ð0ÞhÞ þ k1ð0Þh

� � . ð35Þ

The energy balance condition is useful to help check that the solution is not incorrect (it does not of course guarantee

that the solution is correct). The energy balance condition is surprisingly well satisfied by our solutions, for example

with M ¼ 20 we can easily get 10 decimal places.

4.2. Oblique waves through a set of elastic plates with uniform properties

The solution method we present can be used to solve many of the simpler problems which have been considered in

previous works. For example, we can solve for the problem of a single plate surrounded by water, or for a crack

between two semi-infinite plates. We choose here to compare our results with the results of Porter and Evans (2006),

who solved for the reflection and transmission of flexural-gravity waves propagating obliquely through a set of elastic

plates separated by narrow parallel cracks. This is equivalent to our problem if the properties are identical for each

elastic plate (the plates are of constant thickness, Young’s modulus etc.). We have selected this solution to compare

with, because the most challenging aspect of our problem is the fact that we have multiple cracks. We have also

compared our solution with a single plate surrounded by water and for the problem of a single crack between two

plates. However, we do not present these comparisons here.

The solution of Porter and Evans (2006) expresses the potential f in terms of a linear combination of the incident

wave and certain source functions located at each of the cracks. Along with satisfying the field and boundary

conditions, these source functions satisfy the jump conditions in the displacements and gradients across each crack.

We shall briefly present the solution of Porter and Evans (2006) in our notation and nondimensionalisation. Porter

and Evans (2006) first define a function wðx; zÞ representing outgoing waves as jxj ! 1 which satisfies

ðr2 � k2
yÞw ¼ 0; �hozo0; �1oxo1, (36)

qw
qz
¼ 0; z ¼ �h; �1oxo1, (37)

b
q2

qx2
� k2

y

� �2

� gaþ 1

 !
qw
qz
� aw ¼ dðxÞ; z ¼ 0; �1oxo1. (38)

This problem can be solved to give

wðx; zÞ ¼ �i
XM

n¼�2

sinðkðnÞhÞ cosðkðnÞðz� hÞÞ

2aCn

e�kðnÞjxj, (39)

where

Cn ¼
1

2
hþ
ð5bkðnÞ4 þ 1� agÞ sin2ðkðnÞhÞ

a

� �
, (40)

and kðnÞ are the solutions of the dispersion Eq. (16) (remembering that the plate properties are all identical, so that there

is only a single dispersion equation to solve and we have removed the m subscript).

Consequently, the source functions for a single crack at x ¼ 0 can be defined as

csðx; zÞ ¼ bðwxxðx; zÞ � nk2
ywðx; zÞÞ; caðx; zÞ ¼ bðwxxxðx; zÞ � n1k2

ywxðx; zÞÞ, ð41Þ

where n1 ¼ 2� n. It can easily be shown that cs is symmetric about x ¼ 0 and ca is antisymmetric about x ¼ 0.

Substituting Eq. (39) into Eq. (41) gives

csðx; zÞ ¼ �
b
a

X1
n¼�2

gn cosðkðnÞðzþ hÞÞ

2kxnCn

eknjxj; caðx; zÞ ¼ sgnðxÞi
b
a

X1
n¼�2

g0n cosðkðnÞðzþ hÞÞ

2kxnCn

ekn jxj, ð42Þ
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where

gn ¼ �ikðnÞð�kðnÞ
2
þ nk2

yÞðsinðkðnÞhÞÞ; g0n ¼ kðnÞ2ð�kðnÞ2 þ nk2
yÞðsinðkðnÞhÞÞ.

Porter and Evans (2006) then express the solution to the problem as a linear combination of the incident wave and

pairs of source functions at each crack,

fðx; zÞ ¼ Ie�k1ð0Þðx�r1Þ
cosðk1ð0Þðzþ hÞÞ

cosðk1ð0ÞhÞ
þ
XL�1
n¼1

ðPncsðx� rn; zÞ þQncaðx� rn; zÞÞ, (43)

where Pn and Qn are coefficients to be solved which represent the jump in the gradient and elevation, respectively, of the

plates across the crack x ¼ aj . The coefficients Pn and Qn are found by applying the edge conditions Eqs. (14) and (15)

to the z derivative of f at z ¼ 0.

The reflection and transmission coefficients, R1ð0Þ and TLð0Þ can be found from Eq. (43) by taking the limits as

x!�1 to obtain

R1ð0Þe
�kð0Þr1 ¼ �

b
a

XL�1
n¼1

ekð0Þrn

2k0C0
ðg00Qn þ ig0PjÞ; TLð0Þe

kð0ÞlL ¼ 1þ
b
a

XL�1
n¼1

e�kð0Þrn

2k0C0
ðg00Qn � ig0PjÞ. ð44Þ

Fig. 2 shows a comparison between our results and results calculated using the theory of Porter and Evans (2006) for

L ¼ 2 and 4 with b ¼ 0:1, g ¼ 0 and h ¼ 1. The pluses and circles are the results using our theory, and the solid lines are

due to Porter and Evans (2006). As can be seen from the figure, the two methods are in close agreement.
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Fig. 2. jR1ð0Þj (pluses) and jTLð0Þj (circles) versus a; b ¼ 0:1, g ¼ 0 and h ¼ 1: (a) solutions for two plates with the crack at x ¼ 0 and

with y ¼ 0; (b) solutions for two plates with the crack at x ¼ 0 and with y ¼ p=3; (c) solutions for four plates with the cracks at

x ¼ 0; 1; 2 and with y ¼ 0; (d) solutions for four plates with the cracks at x ¼ 0; 1; 2 and with y ¼ p=12.
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Table 1

jT j for a ¼ 5, b ¼ 0:1, g ¼ 0, h ¼ 1 and the values of L and M are shown, calculated by the present method and by the method in

Porter and Evans (2006)

L M jT j (present method) jT j (Porter and Evans, 2006)

2 5 0.72897005265395 0.68013661602795

10 0.73710075717437 0.73382189306476

20 0.73943613533854 0.73910099180859

50 0.74014223492682 0.74012279625910

100 0.74024743508561 0.74024507931561

150 0.74026720286310 0.74026651629366

4 5 0.78572228609681 0.64049634405062

10 0.81444198211422 0.80423931535963

20 0.82228249776276 0.82126508433661

50 0.82458694969417 0.82452862088603

100 0.82492540871298 0.82491836384358

150 0.82498871994750 0.82498666973497
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Fig. 3. jZj from our model and from the experiment (pluses) for a single plate with incident amplitude (a) 0.84, (b) 1.61 and (c) 2.47

T ¼ 1:4 s.
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4.3. Solution convergence

We can use the solution of Porter and Evans (2006) to investigate the convergence of our solution. Table 1 shows jT j

for our method and for Porter and Evans (2006) as a function of M for L ¼ 2 and 4, a ¼ 5, b ¼ 0:1, g ¼ 0 and h ¼ 1.

The rate of convergence of the two solutions is almost identical. The accuracy of two decimal places for M ¼ 20 is

sufficient for most practical calculations.

4.4. Wave tank experiment

The solution method is also validated by comparison to a series of experiments which were performed in a two-

dimensional wave tank. These experiments were aimed at simulating wave propagation in the marginal ice zone, and

results concerned with determining the dispersion equation are described in Sakai and Hanai (2002). The wave tank

used for the experiment was 26m long, 0.8m wide and 0.6m deep. The waves were generated using a wave-maker set-up

at the front of the tank, and an active wave absorption system was used at the far end of the tank. Elastic sheets were

placed on the surface of the wave tank, with negligible gap. The plates occupied a length of 8m of the tank and the

entire width of the tank. We shall compare with the experiments which were performed with one 8m sheet, two 4m

sheets and four 2m sheets. The elastic plate was 20mm thick, Young’s modulus E was approximately 650MPa and the

density of the plate was 914 kgm�3. The vertical displacement was measured at 25 different points along the plate using

ultrasonic sensors. We assume that Poisson’s ratio n ¼ 0:3, g ¼ 9:8m s�2 and the density of water r ¼ 1000 kgm�3.

Fig. 3 shows the results for a single plate with period T ¼ 1:4 s for three different amplitudes. The figure plots the

absolute value of the displacement as predicted by theory (solid line) with the results measured experimentally (pluses).

As well as showing good agreement between measurement and theory, this figure also shows that the experimental
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Fig. 4. jZj from our model and from experiment (pluses) for a single plate for the wave periods (a) 1 s, (b) 1.2 s and (c) 1.4 s.
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Fig. 5. As Fig. 4 except for two plates.
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amplitudes are within the linear regime because there is little change in the measured results as the amplitude increases

(apart from the uniform linear change).

Figs. 4–6 show the results for T ¼ 1, 1.2 and 1.4 s for one, two and three plates, respectively. The figures show good

agreement, with a trend of increasing agreement as the period increased. The only figure where there is poor agreement

is Fig. 5 for 1.4 s. We are uncertain about the origin of this difference. However, the overall agreement is good,

especially considering that we are plotting the amplitude of displacement. We consider this to be strong confirmation

that our model is performing adequately. The cusps apparent in Fig. 6 for T ¼ 1 s, are caused by the plates being so

short as to be almost rigid and by having a near-zero in displacement. The effect, when plotting the absolute value of

displacement, is a cusp.
5. Conclusions

We have solved for the linear water wave propagation under a set of floating elastic plates. While the problem was

two-dimensional, it does allow the waves to be incident at an angle. The elastic plate properties can be set arbitrarily, so

that the model can also include regions of open water. The solution method is based on an eigenfunction matching at

the boundaries of the plates. We also impose the free-edge conditions at the plate edges, by deriving fewer equations

from matching than there are unknowns. This is done in a very natural way because the eigenfunctions under the plate

actually contain extra modes. The method is stable, but computationally demanding for a large number of plates.

We have compared our solution with one derived by Porter and Evans (2006), which applies to the case of uniform

plate properties, and we found good agreement. We tested the accuracy of our solution and found it was very similar to

that of Porter and Evans (2006). To obtain two-decimal places of accuracy required around 20 modes. We compared

our solution method to a series of experiments performed in a two-dimensional wave tank. The agreement with the
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Fig. 6. As Fig. 4 except for four plates.
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experiments was fairly good, and we believe we can have a high degree of confidence that our solution is correct within

the expected numerical errors.
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